Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Nat Commun ; 15(1): 2402, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493162

ABSTRACT

Routine sampling of pregnant women at first antenatal care (ANC) visits could make Plasmodium falciparum genomic surveillance more cost-efficient and convenient in sub-Saharan Africa. We compare the genetic structure of parasite populations sampled from 289 first ANC users and 93 children from the community in Mozambique between 2015 and 2019. Samples are amplicon sequenced targeting 165 microhaplotypes and 15 drug resistance genes. Metrics of genetic diversity and relatedness, as well as the prevalence of drug resistance markers, are consistent between the two populations. In an area targeted for elimination, intra-host genetic diversity declines in both populations (p = 0.002-0.007), while for the ANC population, population genetic diversity is also lower (p = 0.0004), and genetic relatedness between infections is higher (p = 0.002) than control areas, indicating a recent reduction in the parasite population size. These results highlight the added value of genomic surveillance at ANC clinics to inform about changes in transmission beyond epidemiological data.


Subject(s)
Malaria, Falciparum , Malaria , Parasites , Child , Animals , Female , Pregnancy , Humans , Prenatal Care/methods , Mozambique/epidemiology , Malaria/epidemiology , Malaria/prevention & control , Plasmodium falciparum/genetics , Genomics , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Malaria, Falciparum/parasitology
2.
Malar J ; 23(1): 87, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38532416

ABSTRACT

BACKGROUND: The Magude Project assessed the feasibility of eliminating malaria in Magude district, a low transmission setting in southern Mozambique, using a package of interventions, including long-lasting insecticidal nets (LLINs). As the efficacy of LLINs depends in part on their physical integrity, this metric was quantified for Olyset® Nets post mass-distribution, in addition to net use, care and handling practices and other risk factors associated with net physical integrity. METHODS: Nets were collected during a cross-sectional net evaluation, nine months after the Magude project commenced, which was 2 years after the nets were distributed by the National Malaria Control Programme (NMCP). The physical integrity of the nets was assessed by counting and sizing the holes at different positions on each net. A structured questionnaire was administered to assess how the selected net was used and treated (care, wash and repair). Net bio-efficacy was assessed following the standard World Health Organization (WHO) cone bioassay procedures. RESULTS: Out of the 170 Olyset® Nets included in the analysis, 63.5% had been used the night before. The main reason for not using a net was the notion that there were no mosquitoes present. The average number of people using each net was 1.79. Two thirds of the nets had only been washed once or twice since distribution. Most nets (80.9%) were holed and 18% were torn, but none of the risk factors were significantly associated with net integrity, except for presence of mice in the household. Less than half of the participants noticed holes in holed nets, and of those only 38.6% attempted to repair those. None of the six nets that were tested for bio-efficacy passed the WHO threshold of 80% mosquito mortality. CONCLUSION: Overall the majority of Olyset® Nets were in serviceable condition two years post-distribution, but their insecticidal effect may have been lost. This study-together with previous evidence on suboptimal access to and use of LLINs in Magude district-highlights that LLINs as an intervention could have been optimized during the Magude project to achieve maximum intervention impact.


Subject(s)
Culicidae , Insecticide-Treated Bednets , Insecticides , Malaria , Humans , Animals , Mice , Cross-Sectional Studies , Mozambique , Mosquito Control/methods , Malaria/prevention & control
3.
Res Sq ; 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38014035

ABSTRACT

Routine sampling of pregnant women at first antenatal care (ANC) visits could make Plasmodium falciparum genomic surveillance more cost-efficient and convenient in sub-Saharan Africa. We compared the genetic structure of parasite populations sampled from 289 first ANC attendees and 93 children from the community in Mozambique between 2015 and 2019. Samples were amplicon sequenced targeting 165 microhaplotypes and 15 drug resistance genes. Metrics of genetic diversity and relatedness, as well as the prevalence of drug resistance markers, were consistent between the two populations. In an area targeted for elimination, intra-host genetic diversity declined in both populations (p=0.002-0.007), while for the ANC population, population genetic diversity was also lower (p=0.0004), and genetic relatedness between infections were higher (p=0.002) than control areas, indicating a recent reduction in the parasite population size. These results highlight the added value of genomic surveillance at ANC clinics to inform about changes in transmission beyond epidemiological data.

4.
Nat Commun ; 14(1): 4004, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37414792

ABSTRACT

Pregnant women attending first antenatal care (ANC) visits represent a promising malaria surveillance target in Sub-Saharan Africa. We assessed the spatio-temporal relationship between malaria trends at ANC (n = 6471) and in children in the community (n = 3933) and at health facilities (n = 15,467) in southern Mozambique (2016-2019). ANC P. falciparum rates detected by quantitative polymerase chain reaction mirrored rates in children, regardless of gravidity and HIV status (Pearson correlation coefficient [PCC] > 0.8, χ²<1.1), with a 2-3 months lag. Only at rapid diagnostic test detection limits at moderate-to-high transmission, did multigravidae show lower rates than children (PCC = 0.61, 95%CI[-0.12-0.94]). Seroprevalence against the pregnancy-specific antigen VAR2CSA reflected declining malaria trends (PCC = 0.74, 95%CI[0.24-0.77]). 60% (9/15) of hotspots detected from health facility data (n = 6662) using a novel hotspot detector, EpiFRIenDs, were also identified with ANC data (n = 3616). Taken together, we show that ANC-based malaria surveillance offers contemporary information on temporal trends and geographic distribution of malaria burden in the community.


Subject(s)
Malaria , Prenatal Care , Child , Pregnancy , Female , Humans , Seroepidemiologic Studies , Malaria/diagnosis , Malaria/epidemiology , Health Facilities , Mozambique/epidemiology
5.
Commun Biol ; 6(1): 619, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37291425

ABSTRACT

Mozambique is one of the four African countries which account for over half of all malaria deaths worldwide, yet little is known about the parasite genetic structure in that country. We performed P. falciparum amplicon and whole genome sequencing on 2251 malaria-infected blood samples collected in 2015 and 2018 in seven provinces of Mozambique to genotype antimalarial resistance markers and interrogate parasite population structure using genome-wide microhaplotyes. Here we show that the only resistance-associated markers observed at frequencies above 5% were pfmdr1-184F (59%), pfdhfr-51I/59 R/108 N (99%) and pfdhps-437G/540E (89%). The frequency of pfdhfr/pfdhps quintuple mutants associated with sulfadoxine-pyrimethamine resistance increased from 80% in 2015 to 89% in 2018 (p < 0.001), with a lower expected heterozygosity and higher relatedness of microhaplotypes surrounding pfdhps mutants than wild-type parasites suggestive of recent selection. pfdhfr/pfdhps quintuple mutants also increased from 72% in the north to 95% in the south (2018; p < 0.001). This resistance gradient was accompanied by a concentration of mutations at pfdhps-436 (17%) in the north, a south-to-north increase in the genetic complexity of P. falciparum infections (p = 0.001) and a microhaplotype signature of regional differentiation. The parasite population structure identified here offers insights to guide antimalarial interventions and epidemiological surveys.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Mozambique , Plasmodium falciparum/genetics , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Malaria/drug therapy , Drug Resistance/genetics , Whole Genome Sequencing , Genetic Structures
6.
Malar J ; 22(1): 133, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37095480

ABSTRACT

BACKGROUND: A recent WHO recommendation for perennial malaria chemoprevention (PMC) encourages countries to adapt dose timing and number to local conditions. However, knowledge gaps on the epidemiological impact of PMC and possible combination with the malaria vaccine RTS,S hinder informed policy decisions in countries where malaria burden in young children remains high. METHODS: The EMOD malaria model was used to predict the impact of PMC with and without RTS,S on clinical and severe malaria cases in children under the age of two years (U2). PMC and RTS,S effect sizes were fit to trial data. PMC was simulated with three to seven doses (PMC-3-7) before the age of eighteen months and RTS,S with three doses, shown to be effective at nine months. Simulations were run for transmission intensities of one to 128 infectious bites per person per year, corresponding to incidences of < 1 to 5500 cases per 1000 population U2. Intervention coverage was either set to 80% or based on 2018 household survey data for Southern Nigeria as a sample use case. The protective efficacy (PE) for clinical and severe cases in children U2 was calculated in comparison to no PMC and no RTS,S. RESULTS: The projected impact of PMC or RTS,S was greater at moderate to high transmission than at low or very high transmission. Across the simulated transmission levels, PE estimates of PMC-3 at 80% coverage ranged from 5.7 to 8.8% for clinical, and from 6.1 to 13.6% for severe malaria (PE of RTS,S 10-32% and 24.6-27.5% for clinical and severe malaria, respectively. In children U2, PMC with seven doses nearly averted as many cases as RTS,S, while the combination of both was more impactful than either intervention alone. When operational coverage, as seen in Southern Nigeria, increased to a hypothetical target of 80%, cases were reduced beyond the relative increase in coverage. CONCLUSIONS: PMC can substantially reduce clinical and severe cases in the first two years of life in areas with high malaria burden and perennial transmission. A better understanding of the malaria risk profile by age in early childhood and on feasible coverage by age, is needed for selecting an appropriate PMC schedule in a given setting.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Humans , Child , Child, Preschool , Infant , Malaria/prevention & control , Nigeria , Chemoprevention , Vaccination , Malaria, Falciparum/epidemiology
7.
Trop Med Infect Dis ; 8(4)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37104342

ABSTRACT

The COVID-19 pandemic has led to far-reaching disruptions to health systems, including preventative and curative services for malaria. The aim of this study was to estimate the magnitude of disruptions in malaria case management in sub-Saharan Africa and their impact on malaria burden during the COVID-19 pandemic. We used survey data collected by the World Health Organization, in which individual country stakeholders reported on the extent of disruptions to malaria diagnosis and treatment. The relative disruption values were then applied to estimates of antimalarial treatment rates and used as inputs to an established spatiotemporal Bayesian geostatistical framework to generate annual malaria burden estimates with case management disruptions. This enabled an estimation of the additional malaria burden attributable to pandemic-related impacts on treatment rates in 2020 and 2021. Our analysis found that disruptions in access to antimalarial treatment in sub-Saharan Africa likely resulted in approximately 5.9 (4.4-7.2 95% CI) million more malaria cases and 76 (20-132) thousand additional deaths in the 2020-2021 period within the study region, equivalent to approximately 1.2% (0.3-2.1 95% CI) greater clinical incidence of malaria and 8.1% (2.1-14.1 95% CI) greater malaria mortality than expected in the absence of the disruptions to malaria case management. The available evidence suggests that access to antimalarials was disrupted to a significant degree and should be considered an area of focus to avoid further escalations in malaria morbidity and mortality. The results from this analysis were used to estimate cases and deaths in the World Malaria Report 2022 during the pandemic years.

8.
Malar J ; 22(1): 137, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37101146

ABSTRACT

BACKGROUND: For their 2021-2025 National Malaria Strategic Plan (NMSP), Nigeria's National Malaria Elimination Programme (NMEP), in partnership with the World Health Organization (WHO), developed a targeted approach to intervention deployment at the local government area (LGA) level as part of the High Burden to High Impact response. Mathematical models of malaria transmission were used to predict the impact of proposed intervention strategies on malaria burden. METHODS: An agent-based model of Plasmodium falciparum transmission was used to simulate malaria morbidity and mortality in Nigeria's 774 LGAs under four possible intervention strategies from 2020 to 2030. The scenarios represented the previously implemented plan (business-as-usual), the NMSP at an 80% or higher coverage level and two prioritized plans according to the resources available to Nigeria. LGAs were clustered into 22 epidemiological archetypes using monthly rainfall, temperature suitability index, vector abundance, pre-2010 parasite prevalence, and pre-2010 vector control coverage. Routine incidence data were used to parameterize seasonality in each archetype. Each LGA's baseline malaria transmission intensity was calibrated to parasite prevalence in children under the age of five years measured in the 2010 Malaria Indicator Survey (MIS). Intervention coverage in the 2010-2019 period was obtained from the Demographic and Health Survey, MIS, the NMEP, and post-campaign surveys. RESULTS: Pursuing a business-as-usual strategy was projected to result in a 5% and 9% increase in malaria incidence in 2025 and 2030 compared with 2020, while deaths were projected to remain unchanged by 2030. The greatest intervention impact was associated with the NMSP scenario with 80% or greater coverage of standard interventions coupled with intermittent preventive treatment in infants and extension of seasonal malaria chemoprevention (SMC) to 404 LGAs, compared to 80 LGAs in 2019. The budget-prioritized scenario with SMC expansion to 310 LGAs, high bed net coverage with new formulations, and increase in effective case management rate at the same pace as historical levels was adopted as an adequate alternative for the resources available. CONCLUSIONS: Dynamical models can be applied for relative assessment of the impact of intervention scenarios but improved subnational data collection systems are required to allow increased confidence in predictions at sub-national level.


Subject(s)
Malaria , Child , Infant , Humans , Child, Preschool , Nigeria/epidemiology , Malaria/epidemiology , Malaria/prevention & control , Models, Theoretical , Incidence , Local Government
9.
Res Sq ; 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36865132

ABSTRACT

Pregnant women attending first antenatal care (ANC) visits represent a promising malaria surveillance target in Sub-Saharan Africa. Here we assessed the spatio-temporal relationship between malaria at ANC (n=6,471), in children at the community(n=9,362) and at health facilities (n=15,467) in southern Mozambique (2016-2019). ANC P. falciparum rates detected by quantitative polymerase chain reaction mirrored rates in children, regardless of gravidity and HIV status (Pearson correlation coefficient [PCC]>0.8, χ²<1.1), with a 2-3 months lag. Only at rapid diagnostic test detection limits at moderate-to-high transmission, multigravidae showed lower rates than children (PCC=0.61, 95%CI[-0.12-0.94]). Seroprevalence against the pregnancy-specific antigen VAR2CSA reflected declining malaria trends (PCC=0.74, 95%CI[0.24-0.77]). 80% (12/15) of hotspots detected from health facility data using a novel hotspot detector, EpiFRIenDs, were also identified with ANC data. The results show that ANC-based malaria surveillance offers contemporary information on temporal trends and the geographic distribution of malaria burden in the community.

10.
PLoS One ; 18(3): e0282209, 2023.
Article in English | MEDLINE | ID: mdl-36972236

ABSTRACT

The Magude Project assessed the feasibly of eliminating malaria in a low transmission setting in southern Mozambique using a package of interventions. This study measured the ownership, access and use of long-lasting insecticide treated nets (LLINs) and inequalities in these indicators across household wealth, size and population subgroups, to understand the protection that LLINs provided during the project. Data were obtained from various household surveys. At least 31% of the nets distributed during the 2014 and 2017 campaigns were lost during the first year post-distribution. Most nets (77.1%) present in the district were Olyset Nets. LLIN access never exceeded 76.3% and use varied seasonally between 40% and 76.4%. LLIN access limited LLIN use during the project, especially during the high transmission season. LLIN ownership, access and use were lower in harder-to-reach localities, in poorer and larger households. Children and women below 30 had poorer access to LLINs than the overall population. Net use was lowest among school-aged children and young adults, especially among young males, and highest in children under 5, pregnant women, in older adults and in households that received indoor residual spraying (IRS). This study revealed that LLIN mass-distribution campaigns alone are not sufficient to achieve the high level of net protection needed during elimination programs and that reviewing the LLIN allocation scheme, top-up distributions and/or community engagement campaigns is needed, also to reduce inequalities in populations' access to LLINs.


Subject(s)
Insecticide-Treated Bednets , Ownership , Child , Male , Young Adult , Humans , Female , Pregnancy , Aged , Mozambique , Mosquito Control , Cross-Sectional Studies , Receptor Protein-Tyrosine Kinases
11.
PLoS One ; 18(3): e0283160, 2023.
Article in English | MEDLINE | ID: mdl-37000890

ABSTRACT

This study analysed acceptability and perceived barriers to reactive focal mass drug administration (rfMDA) among community members exposed to community engagement campaigns and malaria elimination interventions in Magude district, following mass drug administration (MDA) in the same district. The study used a formative qualitative study design, consisting of 56 semi-structured interviews with community members, including community leaders, household heads, women of reproductive age, members of the community and adolescents, 4 semi-structured interviews with community health workers, 9 semi-structured interviews with healthcare professionals; and 16 focus group discussions with the general adult population. Data were collected between June and September 2017. A content thematic analysis approach was used to analyse the data. The results of this study showed that rfMDA was accepted due to awareness about the intervention, experience of a previous similar programme, the MDA campaign, and due to favourable perceptions built on the believe that rfMDA would help to prevent, treat and eliminate malaria in the community. Perceived barriers to rfMDA include lack of access to accurate information, reluctance to take a pregnancy test, concern on drug adverse reactions, and reluctance to take antimalarial drugs without any symptom. In conclusion, the community found rfMDA acceptable for malaria intervention. But more community engagement is needed to foster community involvement and self-appropriation of the malaria programme elimination.


Subject(s)
Antimalarials , Malaria , Adult , Adolescent , Humans , Female , Mass Drug Administration , Mozambique , Malaria/drug therapy , Malaria/prevention & control , Antimalarials/therapeutic use , Community Health Workers
12.
PLos ONE ; 18(3): 1-25, mar. 31 2023. tab
Article in English | RSDM | ID: biblio-1531476

ABSTRACT

This study analysed acceptability and perceived barriers to reactive focal mass drug administration (rfMDA) among community members exposed to community engagement campaigns and malaria elimination interventions in Magude district, following mass drug administration (MDA) in the same district. The study used a formative qualitative study design, consisting of 56 semi-structured interviews with community members, including community leaders, household heads, women of reproductive age, members of the community and adolescents, 4 semi-structured interviews with community health workers, 9 semi-structured interviews with healthcare professionals; and 16 focus group discussions with the general adult population. Data were collected between June and September 2017. A content thematic analysis approach was used to analyse the data. The results of this study showed that rfMDA was accepted due to awareness about the intervention, experience of a previous similar programme, the MDA campaign, and due to favourable perceptions built on the believe that rfMDA would help to prevent, treat and eliminate malaria in the community. Perceived barriers to rfMDA include lack of access to accurate information, reluctance to take a pregnancy test, concern on drug adverse reactions, and reluctance to take antimalarial drugs without any symptom. In conclusion, the community found rfMDA acceptable for malaria intervention. But more community engagement is needed to foster community involvement and self-appropriation of the malaria programme elimination.


Subject(s)
Humans , Female , Adolescent , Adult , Malaria/prevention & control , Malaria/drug therapy , Antimalarials/therapeutic use , Pharmaceutical Preparations/chemistry , Community Health Workers , Mass Drug Administration , Mass Drug Administration/methods , Mozambique
13.
PLos ONE ; 18(3): 1-18, mar. 31 2023. graf., tab
Article in English | RSDM | ID: biblio-1531601

ABSTRACT

The Magude Project assessed the feasibly of eliminating malaria in a low transmission setting in southern Mozambique using a package of interventions. This study measured the ownership, access and use of long-lasting insecticide treated nets (LLINs) and inequalities in these indicators across household wealth, size and population subgroups, to understand the protection that LLINs provided during the project. Data were obtained from various household surveys. At least 31% of the nets distributed during the 2014 and 2017 campaigns were lost during the first year post-distribution. Most nets (77.1%) present in the district were Olyset Nets. LLIN access never exceeded 76.3% and use varied seasonally between 40% and 76.4%. LLIN access limited LLIN use during the project, especially during the high transmission season. LLIN ownership, access and use were lower in harder-toreach localities, in poorer and larger households. Children and women below 30 had poorer access to LLINs than the overall population. Net use was lowest among school-aged children and young adults, especially among young males, and highest in children under 5, pregnant women, in older adults and in households that received indoor residual spraying (IRS). This study revealed that LLIN mass-distribution campaigns alone are not sufficient to achieve the high level of net protection needed during elimination programs and that reviewing the LLIN allocation scheme, top-up distributions and/or community engagement campaigns is needed, also to reduce inequalities in populations' access to LLINs.


Subject(s)
Humans , Female , Pregnancy , Child , Adult , Aged , Aged, 80 and over , Mosquito Control , Intellectual Property of Pharmaceutic Products and Process , Insecticides , Demography/statistics & numerical data , Mosquito Control/statistics & numerical data , Receptor Protein-Tyrosine Kinases , Mozambique/epidemiology
14.
Malar J ; 22(1): 29, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36703147

ABSTRACT

BACKGROUND: Malaria is a leading cause of outpatient visits and deaths among children in Guinea. Despite several mass distribution campaigns of insecticide-treated nets (ITNs) in Guinea, ITN ownership and use remain low. Identifying the underlying factors affecting household ITN ownership and ITN usage among those with access will allow the Guinea National Malaria Control Programme to develop targeted initiatives to improve bed net ownership and usage. METHODS: To understand national and regional drivers of ITN ownership and use, multivariable binary logistic regression models were applied to data from the 2018 Demographic and Health Survey to identify risk factors of household ITN ownership and risk factors of ITN use among individuals with access. Akaike Information Criterion (AIC) was used for model parameter selection. Odds ratios were estimated with corresponding 95% confidence intervals. RESULTS: The proportion of households in Guinea with at least one ITN was 44%, ranging from a low of 25% in Conakry to a high of 54% in Labé. Use of ITNs among those with access was 66.1% nationally, ranging from 35.2% in Labé to 89.7% in N'zérékoré. Risk factors for household ITN ownership were household size, marital status of the household head, education level of the household head, and region. For ITN use among those with access, risk factors were age, wealth quintile, marital status, and region. In the seven regions of Guinea and capital of Conakry, risk factors for household ITN ownership were household size in Boké, Faranah, and Kankan; education level of the household head in Boké, Faranah, and N'zérékoré; age of the household head in Conakry and Labé; children under five in the household in Kankan; and wealth quintile in Mamou. For ITN use among those with access, risk factors were marital status in Conakry, Faranah, Kindia, Labé, Mamou, and N'zérékoré; place of residence in Labé; children under five in the household in Labé; wealth quintile in Mamou; and age in Faranah and N'zérékoré. CONCLUSIONS: This analysis identified national and region-specific factors that affect ownership and use among those with access in Guinea. Future ITN and social-behavioural change campaigns in Guinea may particularly want to target larger households, households without children, and areas with lower perceived risk of malaria if universal coverage and usage are to be achieved for optimal malaria prevention.


Subject(s)
Insecticide-Treated Bednets , Insecticides , Malaria , Child , Humans , Ownership , Guinea , Mosquito Control , Family Characteristics , Malaria/prevention & control
15.
BMC Med ; 20(1): 396, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36376866

ABSTRACT

BACKGROUND: Low-density Plasmodium falciparum infections prevail in low transmission settings, where immunity is expected to be minimal, suggesting an immune-independent effect on parasite densities. We aimed to describe parasite densities in pregnancy, and determine how gravidity and antibody-mediated immunity affect these, during a period of declining malaria transmission in southern Mozambique. METHODS: We documented P. falciparum infections at first antenatal care visits (n = 6471) between November 2016 and October 2019 in Ilha Josina (high-to-moderate transmission area), Manhiça (low transmission area), and Magude (pre-elimination area). Two-way interactions in mixed-effects regression models were used to assess gravidity-dependent differences in quantitative PCR-determined P. falciparum positivity rates (PfPRqPCR) and densities, in the relative proportion of detectable infections (pDi) with current diagnostic tests (≥ 100 parasites/µL) and in antimalarial antibodies. RESULTS: PfPRqPCR declined from 28 to 13% in Ilha Josina and from 5-7 to 2% in Magude and Manhiça. In primigravidae, pDi was highest in Ilha Josina at the first study year (p = 0.048), which declined with falling PfPRqPCR (relative change/year: 0.41, 95% CI [0.08; 0.73], p = 0.029), with no differences in antibody levels. Higher parasite densities in primigravidae from Ilha Josina during the first year were accompanied by a larger reduction of maternal hemoglobin levels (- 1.60, 95% CI [- 2.49; - 0.72; p < 0.001), than in Magude (- 0.76, 95% CI [- 1.51; - 0.01]; p = 0.047) and Manhiça (- 0.44, 95% CI [- 0.99; 0.10; p = 0.112). In contrast, multigravidae during the transmission peak in Ilha Josina carried the lowest pDi (p = 0.049). As PfPRqPCR declined, geometric mean of parasite densities increased (4.63, 95% CI [1.28; 16.82], p = 0.020), and antibody levels declined among secundigravidae from Ilha Josina. CONCLUSIONS: The proportion of detectable and clinically relevant infections is the highest in primigravid women from high-to-moderate transmission settings and decreases with declining malaria. In contrast, the falling malaria trends are accompanied by increased parasite densities and reduced humoral immunity among secundigravidae. Factors other than acquired immunity thus emerge as potentially important for producing less detectable infections among primigravidae during marked declines in malaria transmission.


Subject(s)
Antimalarials , Malaria, Falciparum , Humans , Female , Pregnancy , Gravidity , Plasmodium falciparum , Prospective Studies , Malaria, Falciparum/drug therapy , Antimalarials/therapeutic use , Prevalence
16.
PLoS One ; 17(10): e0272655, 2022.
Article in English | MEDLINE | ID: mdl-36190958

ABSTRACT

Indoor residual spraying (IRS) has been and remains an important malaria control intervention in southern Mozambique, South Africa and Eswatini. A better understanding of the effectiveness of IRS campaigns is critical to guide future elimination efforts. We analyze the three IRS campaigns conducted during a malaria elimination demonstration project in southern Mozambique, the "Magude project", and propose a new method to calculate the efficacy of IRS campaigns adjusting for IRS coverage, pace of house spraying and IRS residual efficacy on different wall types. Anopheles funestus sensu lato (s.l.) and An. gambiae s.l. were susceptible to pirimiphos-methyl and DDT. Anopheles funestus s.l. was resistant to pyrethroids, with 24h post-exposure mortality being lower for An. funestus sensu stricto (s.s.) than for An. parensis (collected indoors). The percentage of structures sprayed was above 90% and percentage of people covered above 86% in all three IRS campaigns. The percentage of households sprayed was above 83% in 2015 and 2016, but not assessed in 2017. Mosquito mortality 24h post-exposure stayed above 80% for 196 days after the 2016 IRS campaign and 222 days after the 2017 campaign and was 1.5 months longer on mud walls than on cement walls. This was extended by up to two months when 120h post-exposure mortality was considered. The district-level realized IRS efficacy was 113 days after the 2016 campaign. While the coverage of IRS campaigns in Magude were high, IRS protection did not remain optimal for the entire high malaria transmissions season. The use of a longer-lasting IRS product could have further supported the interruption of malaria transmission in the district. To better estimate the protection afforded by IRS campaigns, National Malaria Control Programs and partners are encouraged to adjust the calculation of IRS efficacy for IRS coverage, pace of house spraying during the campaign and IRS efficacy on different wall types combined with wall type distribution in the sprayed area.


Subject(s)
Anopheles , Insecticides , Malaria , Pyrethrins , Animals , DDT , Humans , Malaria/prevention & control , Mosquito Control/methods , Mosquito Vectors , World Health Organization
17.
PLoS One ; 17(9): e0270882, 2022.
Article in English | MEDLINE | ID: mdl-36107865

ABSTRACT

Characterizing persistent malaria transmission that occurs after the combined deployment of indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) is critical to guide malaria control and elimination efforts. This requires a detailed understanding of both human and vector behaviors at the same temporal and spatial scale. Cross-sectional human behavior evaluations and mosquito collections were performed in parallel in Magude district, Mozambique. Net use and the exact time when participant moved into each of five environments (outdoor, indoor before bed, indoor in bed, indoor after getting up, and outdoor after getting up) were recorded for individuals from three different age groups and both sexes during a dry and a rainy season. Malaria mosquitoes were collected with CDC light traps in combination with collection bottle rotators. The percentage of residual exposure to host-seeking vectors that occurred in each environment was calculated for five local malaria vectors with different biting behaviors, and the actual (at observed levels of LLIN use) and potential (i.e. if all residents had used an LLIN) personal protection conferred by LLINs was estimated. Anopheles arabiensis was responsible for more than 74% of residents' residual exposure to host-seeking vectors during the Magude project. The other four vector species (An. funestus s.s., An. parensis, An. squamosus and An. merus) were responsible for less than 10% each. The personal protection conferred by LLINs prevented only 39.2% of the exposure to host-seeking vectors that survived the implementation of both IRS and LLINs, and it differed significantly across seasons, vector species and age groups. At the observed levels of bednet use, 12.5% of all residual exposure to host-seeking vectors occurred outdoor during the evening, 21.9% indoor before going to bed, almost two thirds (64%) while people were in bed, 1.4% indoors after getting up and 0.2% outdoor after leaving the house. Almost a third of the residual exposure to host-seeking vectors (32.4%) occurred during the low transmission season. The residual bites of An. funestus s.s. and An. parensis outdoors and indoor before bedtime, of An. arabiensis indoors when people are in bed, and of An. squamosus both indoors and outdoors, are likely to have sustained malaria transmission throughout the Magude project. By increasing LLIN use, an additional 24.1% of exposure to the remaining hosts-seeking vectors could have been prevented. Since An. arabiensis, the most abundant vector, feeds primarily while people are in bed, increasing net use and net feeding inhibition (through e.g. community awareness activities and the selection of more effective LLINs) could significantly reduce the exposure to remaining host-seeking mosquitoes. Nonetheless, supplementary interventions aiming to reduce human-vector contact outdoors and/or indoors before people go to bed (e.g. through larval source management, window and eave screening, eave tubes, and spatial repellents) will be needed to reduce residual exposure to the outdoor and early biting An. funestus s.s. and An. parensis.


Subject(s)
Anopheles , Insecticides , Malaria , Animals , Anopheles/physiology , Cross-Sectional Studies , Disease Progression , Female , Humans , Malaria/prevention & control , Male , Mosquito Vectors , Receptor Protein-Tyrosine Kinases
18.
PLoS One ; 17(9): e0271427, 2022.
Article in English | MEDLINE | ID: mdl-36084031

ABSTRACT

The "Magude project" aimed but failed to interrupt local malaria transmission in Magude district, southern Mozambique, by using a comprehensive package of interventions, including indoor residual spraying (IRS), pyrethroid-only long-lasting insecticide treated nets (LLINs) and mass-drug administration (MDA). Here we present detailed information on the vector species that sustained malaria transmission, their association with malaria incidence and behaviors, and their amenability to the implemented control interventions. Mosquitoes were collected monthly between May 2015 and October 2017 in six sentinel sites in Magude district, using CDC light traps both indoors and outdoors. Anopheles arabiensis was the main vector during the project, while An. funestus s.s., An. merus, An. parensis and An. squamosus likely played a secondary role. The latter two species have never previously been found positive for Plasmodium falciparum in southern Mozambique. The intervention package successfully reduced vector sporozoite rates in all species throughout the project. IRS was effective in controlling An. funestus s.s. and An. parensis, which virtually disappeared after its first implementation, but less effective at controlling An. arabiensis. Despite suboptimal use, LLINs likely provided significant protection against An. arabiensis and An. merus that sought their host largely indoors when people where in bed. Adding IRS on top of LLINs and MDA likely added value to the control of malaria vectors during the Magude project. Future malaria elimination attempts in the area could benefit from i) increasing the use of LLINs, ii) using longer-lasting IRS products to counteract the increase in vector densities observed towards the end of the high transmission season, and iii) a higher coverage with MDA to reduce the likelihood of human infection. However, additional interventions targeting vectors that survive IRS and LLINs by biting outdoors or indoors before people go to bed, will be likely needed to achieve local malaria elimination.


Subject(s)
Anopheles , Insecticide-Treated Bednets , Insecticides , Malaria , Pyrethrins , Animals , Humans , Insecticides/pharmacology , Malaria/epidemiology , Malaria/prevention & control , Mosquito Control , Mosquito Vectors
19.
PLos ONE ; 17(9): 1-25, set. 2022. mapas, graf, ilus
Article in English | RSDM | ID: biblio-1531381

ABSTRACT

Characterizing persistent malaria transmission that occurs after the combined deployment of indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) is critical to guide malaria control and elimination efforts. This requires a detailed understanding of both human and vector behaviors at the same temporal and spatial scale. Cross-sectional human behavior evaluations and mosquito collections were performed in parallel in Magude district, Mozambique. Net use and the exact time when participant moved into each of five environments (outdoor, indoor before bed, indoor in bed, indoor after getting up, and outdoor after getting up) were recorded for individuals from three different age groups and both sexes during a dry and a rainy season. Malaria mosquitoes were collected with CDC light traps in combination with collection bottle rotators. The percentage of residual exposure to host-seeking vectors that occurred in each environment was calculated for five local malaria vectors with different biting behaviors, and the actual (at observed levels of LLIN use) and potential (i.e. if all residents had used an LLIN) personal protection conferred by LLINs was estimated. Anopheles arabiensis was responsible for more than 74% of residents' residual exposure to host-seeking vectors during the Magude project. The other four vector species (An. funestus s.s., An. parensis, An. squamosus and An. merus) were responsible for less than 10% each. The personal protection conferred by LLINs prevented only 39.2% of the exposure to host-seeking vectors that survived the implementation of both IRS and LLINs, and it differed significantly across seasons, vector species and age groups. At the observed levels of bednet use, 12.5% of all residual exposure to host-seeking vectors occurred outdoor during the evening, 21.9% indoor before going to bed, almost two thirds (64%) while people were in bed, 1.4% indoors after getting up and 0.2% outdoor after leaving the house. Almost a third of the residual exposure to host-seeking vectors (32.4%) occurred during the low transmission season. The residual bites of An. funestus s.s. and An. parensis outdoors and indoor before bedtime, of An. arabiensis indoors when people are in bed, and of An. squamosus both indoors and outdoors, are likely to have sustained malaria transmission throughout the Magude project. By increasing LLIN use, an additional 24.1% of exposure to the remaining hosts-seeking vectors could have been prevented. Since An. arabiensis, the most abundant vector, feeds primarily while people are in bed, increasing net use and net feeding inhibition (through e.g. community awareness activities and the selection of more effective LLINs) could significantly reduce the exposure to remaining host-seeking mosquitoes. Nonetheless, supplementary interventions aiming to reduce human-vector contact outdoors and/or indoors before people go to bed (e.g. through larval source management, window and eave screening, eave tubes, and spatial repellents) will be needed to reduce residual exposure to the outdoor and early biting An. funestus s.s. and An. parensis.


Subject(s)
Humans , Animals , Male , Female , Vector Borne Diseases/transmission , Insecticides , Malaria/prevention & control , Anopheles/physiology , Pest Control, Biological/trends , Mosquito Control/statistics & numerical data , Cross-Sectional Studies , Receptor Protein-Tyrosine Kinases , Receptor Protein-Tyrosine Kinases/immunology , Disease Progression , Mosquito Vectors , Mozambique
20.
PLoS One ; 16(3): e0249080, 2021.
Article in English | MEDLINE | ID: mdl-33755685

ABSTRACT

BACKGROUND: This study aimed to capture the acceptability prior to, during and after the implementation of the first year of MDA rounds conducted under the Magude project, a malaria elimination project in southern Mozambique. METHODS: This was a mixed-methods study, consisting of focus group discussions (FGDs) prior to the implementation of MDA rounds (September 2015), non-participant observations (NPOs) conducted during the MDA rounds (November 2015 -beginning of February 2016), and semi-structured interviews (SSIs) after the second round (end of February 2016). Community leaders, women in reproductive age, general members of the community, traditional healers and health professionals were recruited to capture the opinions of all representing key members of the community. A generic outline of nodes and codes was designed to analyze FGDs and SSI separately. Qualitative and quantitative NPO information was analyzed following a content analysis approach. FINDINGS: 222 participants took part in the FGDs (n = 154), and SSIs (n = 68); and 318 household visits during the MDA underwent NPOs. The community engagement campaign emerged throughout the study stages as a crucial factor for the acceptability of MDAs. Acceptability was also fostered by the community's general will to cooperate in any government-led activity that would reduce malaria burden, the appropriate behavior and knowledge of field workers, or the fact that the intervention was available free of charge to all. Absenteeism of heads of households was identified as the main barrier for the success of the campaign. The most commonly reported factors that negatively affected acceptability were the fear of adverse events, rumors of deaths, being unable to drink alcohol while taking DHAp, or the fear to take DHAp while in anti-retroviral treatment. Pregnancy testing and malaria testing were generally well accepted by the community. CONCLUSION: Magude's community generally accepted the first and second antimalarial MDA rounds, and the procedures associated to the intervention. Future implementation of antimalarial MDAs in southern Mozambique should focus on locally adapted strategies that engage the community to minimize absenteeism and refusals to the intervention.


Subject(s)
Antimalarials/administration & dosage , Malaria/prevention & control , Adult , Community Participation , Female , Focus Groups , Health Personnel/psychology , Humans , Infection Control , Interviews as Topic , Knowledge , Malaria/diagnosis , Malaria/drug therapy , Male , Mass Drug Administration , Mozambique , Patient Acceptance of Health Care/psychology
SELECTION OF CITATIONS
SEARCH DETAIL
...